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Effect of linear coupling on nonlinear resonances in betatron motion
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The influence of linear coupling on nonlinear resonances in betatron motion is considered. A model of lattice
with a single sextupole and a linearly coupled one-turn matrix is analyzed. The perturbative approach based on
normal forms is considered, and the relation of the first resonant coefficient of the interpolating Hamiltonian
with the island width or with the unstable separatrices is outlined. The dependence of the first resonant
coefficient on the coupling angle is worked out for generic resonances. The analytical results are in very good
agreement with the numerical simulations based on tracking and frequency analysis.
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I. INTRODUCTION

In circular accelerators there are several sources of lin
coupling between the vertical and the horizontal betatron
cillations. The longitudinal magnetic field of solenoids cr
ates linear coupling that can be locally corrected by sk
quadrupoles; moreover, superconducting dipoles, which
used both in present and in future large hadron colliders@1#,
do contain unwanted skew quadrupole components; o
sources of linear coupling are the misalignments of the m
nets.

A theory of linear coupling has been developed seve
years ago@2,3#; one can define a symplectic rotation th
transforms a generic linearly coupled matrix to an uncoup
one. Such transformation depends on the coupling angw
that measures the deviation from the uncoupled case.
effect of linear coupling on the linear optics of the latti
~i.e., beta functions, linear tunes, and Courant-Snyder inv
ants! has been worked out during the last decades@4,5#.
Moreover, clever ways to decouple the linear motion us
some families of correcting skew quadrupoles have been
fined ~see, for instance,@6,7#!. On the other hand, much les
work has been developed to analyze the influence of lin
coupling on the nonlinear motion@5,8#, and on the dynamic
aperture.

Unfortunately, no analytical tools are available for a d
rect evaluation of the dynamic aperture~with the exception
of the case of the working point close to unstable low-or
resonances!. On the other hand, the perturbative formalis
based either on Hamiltonian flows@9,10,14# or directly on
the one-turn map@11–13,15,16# provides a lot of relevan
information on nonlinear resonances.

In this paper we outline the results obtained in Ref.@17#,
where the effect of linear coupling on nonlinear resonan
is analyzed for a lattice model made up of a normal sex
pole and a linearly coupled one-turn matrix. Using the p
turbative tools of normal forms@13,15,18#, we compute the
value of the first resonant coefficient~i.e., theleading term!
in the interpolating Hamiltonian for several resonances
for different coupling angles. Order-independent codes
used to automatically evaluate the normal form series o
generic one-turn map~see Refs.@19,20#!. Then, the scaling
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laws that relate the island width~stable resonances! or the
dynamic aperture~unstable resonances! to the leading term
of the resonance are outlined, and the dependence of
leading term on the coupling anglew is worked out. One
finds that in the uncoupled case some resonances have
leading terms, and that for weak linear coupling all the
coefficients grow proportionally tow. At the same time, all
the other resonances have a leading term that decreases
portionally tow2. In order to check out this analytical resu
we use a numerical method to visualize the network of re
nances and their widths using short-term tracking and
quency analysis@21–24#; the numerical simulations fully
confirm the analytical results.

II. MODEL: HE´NON MAP WITH LINEAR COUPLING

We consider a lattice made up of a linear part plus
sextupole of unitary strength in the one-kick approximati
@13#, whose one-turn map reads

S x8

px8

y8

py8
D 5LS x

px1~x22y2!

y

py22xy
D . ~1!

The transfer matrixL can be factorized according to th
well-known formula@2#

L5S Ic D21s

2Ds Ic D S A 0

0 BD S Ic 2D21s

Ds Ic D , ~2!

whereA, B, D, and I are two-dimensional~2D! matrices
(I is the identity!, s5sinw, c5cosw, andw is the coupling
angle. Even though not all the transfer matrices can be w
ten in the above form, this is sufficiently generic for o
purposes. The matricesA and B can be written in the
Courant-Snyder form@25#, and therefore one can define th
linear transformation T and the new coordinate
(u,pu ,v,pv)
2059 © 1997 The American Physical Society
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S u

pu

v

pv
D 5T21S x

px

y

py
D ~3!

that reduce the linear part of the map to the direct produc
two 2D rotations of anglesv1 andv2

T21LT5S R~v1! 0

0 R~v2!D . ~4!

The map expressed in the coordinates (u,pu ,v,pv) will be
used for numerical simulations. In order to apply the norm
form theory, it is customary to diagonalize the linear part
the motion, i.e., switch to the complex coordinat
z15u2 ipu and z25v2 ipv . In these variables, the ma
reads

z185eiv1z11F1~z1 ,z1* ,z2 ,z2* !

z285eiv2z21F2~z1 ,z1* ,z2 ,z2* !, ~5!

whereF1 and F2 are polynomials of second degree in t
variables (z1 ,z1* ,z2 ,z2* ), whose coefficients depend on th
linear parametersw, A, B and D. For w50 most of the
monomial coefficients are zero, and one obtains the fo
dimensional~4D! Hénon map@13#.

FIG. 1. Dependence of the leading termh0,0,1of resonance~1,2!
~top! and ~4,1! ~bottom! on the coupling anglew for a 4D Hénon
map linearly coupled.
of
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In simulations we set the matrixD to the identity: one can
show@17# that this is a rather good approximation for line
coupling generated by skew quadrupoles or solenoids. M
over, we assume that theb functions in the sextupole hav
the same value and that their derivatives are equal to z
The fractional parts of the working point are fixed on t
proposed LHC value:v1/2p50.28 andv2/2p50.31.

III. NONLINEAR RESONANCES
THROUGH NORMAL FORMS

Once the linear part of the map is diagonalized, one
apply the standard normal form procedure to extract the re
nance parameters. We will only outline the procedure, a
we refer to the existing literature@11–13,18,20# for a more
complete description. The nonlinear mapF is transformed
through a nonlinear conjugating function to the normal fo
U, whose polynomial structure is much simpler~i.e., most of
its monomials are zero!. The normal formU is then ex-
pressed as the Lie series of an interpolating Hamiltonian.
(z1 ,z1* ,z2 ,z2* ) be the normal form coordinates, and l
(u1 ,u2 ,r1 ,r2) be the amplitude-angle variables that a
more suitable for our analysis: one hasz j5Ar jexp(iuj) for
j51,2. The Hamiltonian for a resonance (q,p) in these vari-
ables reads

h5( hk1 ,k2 ,l ~r1!
k11 lq/2~r2!

k21 l upu/2

3cos@ l ~qu11pu2!1wk1 ,k2 ,l
#, ~6!

whereqP N andpP Z denote the resonance. Sinceh con-
tains only one combination of angles, then there is a sec
invariant r 25pr12qr2 andh can be reduced to a 2D pen
dulum Hamiltonian with a parametric dependence onr 2.

In this paper we will focus on the coefficienth0,0,1: this is
the first resonant coefficient, i.e., the coefficient of the m
nomial in the Hamiltonian that depends on the angles
whose order in the amplitudes is minimum;h0,0,1 can be
equivalently called theleading termof the resonance. We
consider the generic case of an accelerator whose first-o
detuning is different from zero: one can prove@13# that if the
resonance orderq1upu is greater than four, then the reduce
Hamiltonian features a chain of islands whose areaS scales
with h0,0,1 according to

S}Ah0,0,1. ~7!

The total hypervolume in the 4D phase space of initial co
ditions that are locked on the resonance can be obtaine
integrating the island area along the second invariantr 2, and,
therefore, it has the same dependence on the leading term
the case of resonances of order 3, ifh0,0,1Þ0 then the re-
duced Hamiltonian features a separatrix that limits the sta
ity domain, whose distanceD to the origin scales accordin
to

D}~h0,0,1!
22. ~8!

In the case of resonances of order 4 one can have both
ations. If the leading term is dominant over the first-ord
detuning terms, there is a separatrix whose distance to
origin scales according to
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D}~h0,0,1!
21. ~9!

Otherwise, there is an island whose area has the same de
dence of Eq.~7! on the leading term.

IV. NORMAL FORM RESULTS

Using the codeARES @20#, we evaluated the leading term
of several resonances for a model without linear coupl
@w50 in Eq.~2!# and with a very weak linear coupling. Th

FIG. 2. Network of resonances for a 4D He´non map without
linear coupling; some resonances are indicated above their c
nels.

FIG. 3. Network of resonances for a 4D He´non map with linear
couplingw5p/12; some resonances are indicated above their ch
nels.
en-

g

results show that, ifp is even, a resonance (q,p) has a non-
zero leading term forw50; if p is odd, then the leading term
for w50 is zero. This property is due to the absence of so
monomials in the quadratic nonlinearity, i.e., to the fact th
the sextupole has no skew component. Indeed, nume
simulations show that a weak linear coupling generates n
zero leading terms for all the resonances (q,p) with odd p.

We have also analyzed the dependence of the lea
term on the coupling anglew. In Fig. 1, top, we plot the case
of resonance~1,2!, that features a nonzero leading term f
w50. In Fig. 1, bottom, the same plot is given for resonan
~4,1!, that has a zero leading term forw50. It turns out that
h0,0,1 has the following dependence onw: for resonances
with zero leading term atw50 one has

h0,0,1~w!5k1w1O~w2! ~10!

whilst in the other case one has

h0,0,1~w!5k02k2w
21O~w3! ~11!

wherek0 ,k1 and k2 are positive constants. This behavi
has been verified for several cases; an analytical proof, ba
on the algebraic evaluation of the dependence ofh0,0,1 on
f, has been given for resonances of order 3 and 4@17#.

The main result of this analysis is that the linear coupli
increases the strength of resonances with zero leading
in the uncoupled case, and decreases the effect of the o
ones. Usually, the maximum inh0,0,1(w) for one type of
resonances corresponds to the minimum inh0,0,1(w) for the
other ones. This result will be confirmed by numerical sim
lations in Sec. V.

n-

n-

FIG. 4. Network of resonances for a 4D He´non map with linear
couplingw5p/6; some resonances are indicated above their ch
nels.
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V. NUMERICAL RESULTS

In order to check out the analytical results, we use
method to visualize the network of resonances and t
strength in phase space, using short-term tracking and
quency analysis@21–24#. We consider a very dense grid o
initial conditions~4003400! in the plane (u,v), and we set
the momenta (pu ,pv) to zero. For each initial condition we
start a short-term tracking~1024 turns! and we compute the
frequencies of the orbit using the interpolation of the f
Fourier transform~FFT! plus Hanning filter@23#. If the non-
linear frequencies (n1 ,n2) satisfy a resonant condition

qn11pn25 l1e e!1 ~12!

with qPN, p,lPZ, then the initial condition is locked on
the resonance (q,p). The plot in the plane (u,v) of only
these initial conditions provides a picture of the network
resonances: large resonant channels correspond to s
resonances, and vice versa.

In Fig. 2 we give this plot for the map~1! without linear
coupling (w50); large dots represent the short-term d
namic aperture. One can see that the largest channels c
spond to resonances (6,22), (3,26), and (1,21), that
have a nonzero leading term. Resonance (1,24) as well has
a very strong leading term: there is no phase locking and
resonance splits the stability domain. The channel of re
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nance (2,25), which has a zero leading term, is rather sma
In Figs. 3 and 4 we plot the same picture for the same mo
with w5p/12 andw5p/6, respectively: in Fig. 3 resonance
(6,22), (3,26), and (1,21) are less strong and in Fig.
they disappear, whilst resonance (2,25) becomes more and
more relevant. This agrees with the perturbative analysis
ried out through normal forms. In order to better visuali
the mechanism of resonance excitation and deexcitation
have considered extremely large coupling angles.

Finally, we remark that in presence of strong linear co
pling a new phenomenon appears on resonance cross
whilst for w50 resonances belonging to the same resona
nest cross in the same point~see Fig. 2, atu'0.16 and
v'0.14), for large values of the coupling angles one ha
splitting of the crossing~see Fig. 4, same place!; this is typi-
cal of systems with strong linear coupling, and it has be
observed also in other fields of physics@26#.
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