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Effect of linear coupling on nonlinear resonances in betatron motion
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The influence of linear coupling on nonlinear resonances in betatron motion is considered. A model of lattice
with a single sextupole and a linearly coupled one-turn matrix is analyzed. The perturbative approach based on
normal forms is considered, and the relation of the first resonant coefficient of the interpolating Hamiltonian
with the island width or with the unstable separatrices is outlined. The dependence of the first resonant
coefficient on the coupling angle is worked out for generic resonances. The analytical results are in very good
agreement with the numerical simulations based on tracking and frequency analysis.
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PACS numbeps): 41.85—p, 29.27—a, 03.20+i

I. INTRODUCTION laws that relate the island widt{stable resonance®r the
dynamic aperturéunstable resonancet® the leading term
In circular accelerators there are several sources of lineayf the resonance are outlined, and the dependence of the
coupling between the vertical and the horizontal betatron osleading term on the coupling angle is worked out. One
cillations. The longitudinal magnetic field of solenoids cre-finds that in the uncoupled case some resonances have zero
ates linear coupling that can be locally corrected by skeweading terms, and that for weak linear coupling all these
quadrupoles; moreover, superconducting dipoles, which areoefficients grow proportionally te. At the same time, all
used both in present and in future large hadron colliflefs the other resonances have a leading term that decreases pro-
do contain unwanted skew quadrupole components; othgrortionally to 2. In order to check out this analytical result,
sources of linear coupling are the misalignments of the magwe use a numerical method to visualize the network of reso-
nets. nances and their widths using short-term tracking and fre-
A theory of linear coupling has been developed severafjuency analysig21-24; the numerical simulations fully
years ago[2,3]; one can define a symplectic rotation that confirm the analytical results.
transforms a generic linearly coupled matrix to an uncoupled
one. Such transformation depends on the coupling aagle ||. MODEL: HE NON MAP WITH LINEAR COUPLING
that measures the deviation from the uncoupled case. The ] ] ]
effect of linear coupling on the linear optics of the lattice W€ consider a lattice made up of a linear part plus a
(i.e., beta functions, linear tunes, and Courant-Snyder invari€Xtupole of unitary strength in the one-kick approximation
anty has been worked out during the last decafgs]. [13], whose one-turn map reads
Moreover, clever ways to decouple the linear motion using ,

some families of correcting skew quadrupoles have been de- X X

fined (see, for instancdB,7]). On the other hand, much less [0 Pyt (X2—y?)

work has been developed to analyze the influence of linear vl =L ) (1)
coupling on the nonlinear motidrb,8], and on the dynamic y y

aperture. Py py—2Xy

Unfortunately, no analytical tools are available for a di-
rect evaluation of the d_ynaml_c apertueith the exception The transfer matrix. can be factorized according to the
of the case of the working point close to unstable low-order
; .~ well-known formula[2]
resonances On the other hand, the perturbative formalism

based either on Hamiltonian flow9,10,14 or directly on lc D 1s A 0O lc -D s
the one-turn mapl1-13,15,1% provides a lot of relevant
information on nonlinear resonances. L=| _ Ds lc 0 B Ds lc , 2

In this paper we outline the results obtained in R&f],
where the effect of linear coupling on nonlinear resonances
is analyzed for a lattice model made up of a normal sextuwhereA, B, D, andl are two-dimensional2D) matrices
pole and a linearly coupled one-turn matrix. Using the per{l is the identity, s=sing, c=cosp, and ¢ is the coupling
turbative tools of normal formgl3,15,18, we compute the angle. Even though not all the transfer matrices can be writ-
value of the first resonant coefficiefite., theleading termy  ten in the above form, this is sufficiently generic for our
in the interpolating Hamiltonian for several resonances anghurposes. The matriceA and B can be written in the
for different coupling angles. Order-independent codes ar€ourant-Snyder forni25], and therefore one can define the
used to automatically evaluate the normal form series of dinear transformation T and the new coordinates
generic one-turn mafsee Refs[19,2(). Then, the scaling (u,py,v,p,)
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In simulations we set the matr to the identity: one can

. show[17] that this is a rather good approximation for linear
' coupling generated by skew quadrupoles or solenoids. More-
o1k over, we assume that the functions in the sextupole have
the same value and that their derivatives are equal to zero.
o.08f The fractional parts of the working point are fixed on the
008l proposed LHC valuew,/27=0.28 andw,/27m=0.31.
0.04 r IIl. NONLINEAR RESONANCES
Do THROUGH NORMAL FORMS
Once the linear part of the map is diagonalized, one can
O —057 04 06 08 1 apply the standard normal form procedure to extract the reso-
¢ nance parameters. We will only outline the procedure, and
we refer to the existing literaturel1-13,18,20 for a more
0.01r complete description. The nonlinear mépis transformed
through a nonlinear conjugating function to the normal form
0.008 L U, whose polynomial structure is much simpiee., most of
its monomials are zejo The normal formU is then ex-
0.006 L pressed as the Lie series of an interpolating Hamiltonian. Let
(£1,¢7,¢>,45) be the normal form coordinates, and let
0.004 b (61,05,p1,p2) be the amplitude-angle variables that are
more suitable for our analysis: one hgs= \/p_jequ 6;) for
0.002¢ j=1,2. The Hamiltonian for a resonanag, p) in these vari-
. ables reads

0 02 04 086 08 1
2

h=2 i s,0 (po)at!9%(py)ketlel2

FIG. 1. Dependence of the leading tehg), ; of resonancél,2)
(top) and (4,1) (bottom on the coupling angle for a 4D Heon Xcog1(qf1+pb) + @i, k, 11, (6)
map linearly coupled. )
wherege N andpe Z denote the resonance. Sinteon-

tains only one combination of angles, then there is a second

! X invariantr,=pp;—Qp, andh can be reduced to a 2D pen-
Pu Px dulum Hamiltonian with a parametric dependenceren
v [T y 3 In this paper we will focus on the coefficieng g ,: this is

the first resonant coefficient, i.e., the coefficient of the mo-
Po Py nomial in the Hamiltonian that depends on the angles and

whose order in the amplitudes is minimuring o, can be
that reduce the linear part of the map to the direct product oéquivalently called thdeading termof the resonance. We
two 2D rotations of angles; and w, consider the generic case of an accelerator whose first-order
detuning is different from zero: one can prdus] that if the
R(wy) 0 resonance ordeg+|p| is greater than four, then the reduced
TUT=| o R(w,) |- (4)  Hamiltonian features a chain of islands whose &escales
with hg o ; according to

The map expressed in the coordinatesp( ,v,p,) will be Sxyhgo 1 (7)
used for numerical simulations. In order to apply the normal

form theory, it is customary to diagonalize the linear part of The total hypervolume in the 4D phase space of initial con-
the motion, ie. switch to the complex coordinatesditions that are locked on the resonance can be obtained by

z;=u—ip, and z,=v—ip,. In these variables, the map integrating the island area along the second invarignand,

reads therefore, it has the same dependence on the leading term. In
the case of resonances of order 3hify ;#0 then the re-
z;= ez, +F(z, Z¥2,,25) duced Hamiltonian features a separatrix that limits the stabil-
ity domain, whose distand@ to the origin scales according
2y=€'°22,+F5(21,2% ,2,,23), (5 0
D (hgo1) 2 (8)

whereF, and F, are polynomials of second degree in the
variables ¢,,7} ,z,,25), whose coefficients depend on the In the case of resonances of order 4 one can have both situ-
linear parameters, A, B and D. For ¢=0 most of the ations. If the leading term is dominant over the first-order
monomial coefficients are zero, and one obtains the fouredetuning terms, there is a separatrix whose distance to the
dimensional(4D) Henon map[13]. origin scales according to



55 BRIEF REPORTS 2061

u u
FIG. 2. Network of resonances for a 4D ks map without FIG. 4. Network of resonances for a 4D kten map with linear
linear coupling; some resonances are indicated above their chageupling ¢ = 7/6; some resonances are indicated above their chan-
nels. nels.
-1 o
Dec(hgp0) (9 results show that, ip is even, a resonance,(p) has a non-

zero leading term fop=0; if p is odd, then the leading term
Otherwise, there is an island whose area has the same depéor ¢ =0 is zero. This property is due to the absence of some

dence of Eq(7) on the leading term. monomials in the quadratic nonlinearity, i.e., to the fact that
the sextupole has no skew component. Indeed, numerical
IV. NORMAL FORM RESULTS simulations show that a weak linear coupling generates non-

zero leading terms for all the resonancesp) with odd p.
Using the codeares[20], we evaluated the leading terms ~ We have also analyzed the dependence of the leading
of several resonances for a model without linear couplingerm on the coupling angle. In Fig. 1, top, we plot the case
[¢=0 in Eqg.(2)] and with a very weak linear coupling. The of resonancé1,2), that features a nonzero leading term for
¢=0. In Fig. 1, bottom, the same plot is given for resonance
S - (4,1), that has a zero leading term fer=0. It turns out that
ho o1 has the following dependence agt for resonances
with zero leading term ap=0 one has

hoo1(®) =K1+ O0(¢?) (10)

whilst in the other case one has
ho0.1(®) = ko= Ka¢?+ O( %) (11)

where kg,x1 and k, are positive constants. This behavior
has been verified for several cases; an analytical proof, based
on the algebraic evaluation of the dependencéngf, on
¢, has been given for resonances of order 3 anii73.
The main result of this analysis is that the linear coupling
increases the strength of resonances with zero leading term
U in the uncoupled case, and decreases the effect of the other
ones. Usually, the maximum ihgq ) for one type of
FIG. 3. Network of resonances for a 4D i map with linear  resonances corresponds to the minimunigr  ¢) for the
couplinge = m/12; some resonances are indicated above their chargther ones. This result will be confirmed by numerical simu-
nels. lations in Sec. V.
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V. NUMERICAL RESULTS nance (2;-5), which has a zero leading term, is rather small.
. In Figs. 3 and 4 we plot the same picture for the same model
In order to check out the analytical results, we use a . - v . LT
: . Wwith ¢ = 7r/12 andep = 7/6, respectively: in Fig. 3 resonances
method to visualize the network of resonances and thei 6,—2), (3—6), and (1.-1) are less strong and in Fig. 4
strength in phase space, using short-term tracking and fr%— ' T ' ' 9 9.
quency analysi$21-24. We consider a very dense grid of
initial conditions (400X 400 in the plane @,v), and we set
the momentag,,p,) to zero. For each initial condition we
start a short-term trackingl024 turn$ and we compute the
frequencies of the orbit using the interpolation of the fast
Fourier transform(FFT) plus Hanning filte[23]. If the non-

linear frequenciesy; ,v,) satisfy a resonant condition

hey disappear, whilst resonance<2%) becomes more and
more relevant. This agrees with the perturbative analysis car-
ried out through normal forms. In order to better visualize
the mechanism of resonance excitation and deexcitation we
have considered extremely large coupling angles.

Finally, we remark that in presence of strong linear cou-
pling a new phenomenon appears on resonance Crossings:
whilst for ¢ =0 resonances belonging to the same resonance

quitpro=l+e e<1 (12)  nest cross in the same poifdee Fig. 2, atu~0.16 and
v~0.14), for large values of the coupling angles one has a
with ge N, p,l eZ, then the initial condition is locked on splitting of the crossingsee Fig. 4, same plagehis is typi-
the resonanceq(p). The plot in the plane,v) of only  cal of systems with strong linear coupling, and it has been
these initial conditions provides a picture of the network ofobserved also in other fields of physi@&s].
resonances: large resonant channels correspond to strong
resonances, and vice versa.

In Fig. 2 we give this plot for the mafil) without linear
coupling (¢=0); large dots represent the short-term dy- We wish to thank Professor Turchetti for his constant as-
namic aperture. One can see that the largest channels coristance and valuable help; we also want to thank W. Scan-
spond to resonances (62), (3,—-6), and (1;-1), that dale for proposing this subject and for interesting discus-
have a nonzero leading term. Resonance-@l), as well has  sions. A special thanks to Professor Spillantini for financial
a very strong leading term: there is no phase locking and theupport and to Professor Elskens and Professor Oide for
resonance splits the stability domain. The channel of rescstimulating and useful discussions.
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